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INTRODUCTION

Cylindrical gear pairs are commonly ap-
plied in nearly all branches of industry. Grow-
ing requirements placed on gear pairs, such 
as increased load-carrying capacity, improved 
noise behaviour, low weight or reliability, have 
prompted researchers and engineers to look for 
increasingly novel technological and design so-
lutions. More and more attention is drawn to 
new manufacturing technologies like DMLS 
[1], as well as new tooth finishing techniques 
[2]. Novel types of calculation procedures aim-
ing at gear mass reduction [3] as well as more 
accurate surface strength and wear prediction 
[4] are also within the interests of gear scien-
tists and engineers. In addition, designers look 
for new tooth profiles which could provide an 
alternative to the commonly used involute pro-
file. A recently published review paper [5] ex-
tensively discusses the literature concerning the 
non-involute external gears. The authors com-
pared various types of gear meshes in terms of 

surface durability, root load capacity, gear ef-
ficiency, vibration, and sensitivity to assembly 
and manufacturing errors. Fourteen types of 
gear profiles were compared such as: cycloid 
gears [6], Novikov gears [7], triple circular-
arc gears [8], cosine gears [9], double circular 
arc involute gears [10], S-gears [11], and pure 
rolling helical gears [12]. From all referenced 
above types of tooth profiles, the greatest sur-
face durability and the smallest heat load are 
assigned to pure rolling transmission, S-gears, 
and conformal gearings (Novikov gears or 
W-N gears). Pure rolling transmission opera-
tion is similar to Novikov gears. The continu-
ity of meshing is realized by overlap. The tooth 
profiles may be chosen arbitrarily however the 
contact point should lay on point of tangency of 
pitch circles to avoid sliding velocity. In paper 
[13] authors proposed the tooth profiles of pure 
rolling transmission formed by circular arcs 
with the convexo-convex type of contact. They 
have investigated proposed gearing in terms of 
contact stresses and loaded transmission error 
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[13]. The pure rolling type of transmission was 
also investigated in gear-rack [14] and internal 
helical [15] gear mesh. S-gears are gears, which 
profi le is formed by a rack with an analytical-
ly defi ned profi le by power function [16]. The 
transverse line of action of this type of gearing 
is curvilinear and therefore may off er a greater 
contact ratio than conformal or pure rolling 
gearing. The advantage of this kind of gear 
mesh is reduced sliding velocity in compari-
son with the involute one which was reported 
in [17]. This type of gear profi le was proposed 
for polymer gears [18]. Novikov gears also of-
fer reduced sliding in comparison with involute 
gears and due to conformal contact may be ben-
efi cial in terms of surface strength. Successful 
application of Novikov gears [19] prompts the 
scientist to continue the research on this kind 
of gearing [7,20]. Another non-conventional 
tooth profi le is the so-called eccentric-cycloidal 
tooth profi le. This kind of gearing is a special 
case of helical cycloid gear drive where the 
pinion tooth profi le is formed by the circular 
arc and the conjugated gear wheel profi le is 
an internal equidistant of the epicycloid [21]. 
The-above referenced gear teeth profi le is not 
well researched and described in the literature. 
Therefore, the aim of this paper is to compare 
three types of cylindrical gear pairs: an invo-
lute gear pair, a Novikov gear pair [7,20], and 
an eccentric-cycloidal gear pair [21,22].

MATHEMATICAL MODEL OF 
CYLINDRICAL GEAR MESH

The analysis will concern cylindrical reduc-
tion gear pairs with parallel axes and external 
meshing. Moving coordinate systems 1 and 2 
connected, respectively, with the drive gear (the 
pinion) and the driven gear (the gear wheel) were 
set up. The gears rotate around axes 𝑧𝑧!  and 𝑧𝑧!  by 
angles 𝜑𝜑!  and 𝜑𝜑!  in in the indicated directions of 
angular velocities 𝜔𝜔!  and 𝜔𝜔!  (Figure 1). Tooth 
surfaces are represented in appropriate coordinate 
systems �̅�𝑟!

(!)(𝜃𝜃!, 𝜁𝜁!)  and �̅�𝑟!
(!)(𝜃𝜃!, 𝜁𝜁!) .

Moreover, fi xed coordinate system f connect-
ed with the transmission body was introduced, 
wherein axis zf corresponds to axis z1 of the pin-
ion’s coordinate system. The gear wheel’s rolling 
cylinders with diameters dt1 and dt2 are separated 
by centre distance ar. In order to take into account 
axis position deviations due to assembly or work-
manship errors, or elastic deformations of shafts 
and bearings, the coordinate system connected 
with the gear wheel must be shifted along axis xf, 
yf, zf by Δax, Δay and Δaz, and then rotated relative 
to fi xed axes parallel to axes xf and yf, respective-
ly, by angles κx and κy. For this purpose, addition-
al coordinate system h was introduced (Figure 2).

Allowing for errors, the gear will rotate 
around the new shifted and skewed axis zh=z2. 
In the context of Figures 1 and 2, transformation 
matrices from system f are given as (1) and (2):

Figure 1. Coordinate systems set up in the cylindrical gear pair mesh analysis
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𝑀𝑀!" = Rot(−𝜑𝜑", 𝑍𝑍) (1)

𝑀𝑀!" = 𝑀𝑀!#𝑀𝑀#" (2)

where: matrices Mh2 and M�h are given as (3) 
and (4):

𝑀𝑀!" = Rot(𝜑𝜑", 𝑍𝑍) (3)

𝑀𝑀!" = Rot&𝜅𝜅# , 𝑌𝑌* · Rot(𝜅𝜅$ , 𝑋𝑋) · Tr(𝑎𝑎% + Δ𝑎𝑎$ , 𝑋𝑋) · Tr&Δ𝑎𝑎# , 𝑌𝑌* · Tr(Δ𝑎𝑎&, 𝑍𝑍) 

𝑀𝑀!" = Rot&𝜅𝜅# , 𝑌𝑌* · Rot(𝜅𝜅$ , 𝑋𝑋) · Tr(𝑎𝑎% + Δ𝑎𝑎$ , 𝑋𝑋) · Tr&Δ𝑎𝑎# , 𝑌𝑌* · Tr(Δ𝑎𝑎&, 𝑍𝑍) 
(4)

Then, tooth surfaces in the fi xed coordinate sys-
tem can be expressed as (5) and (6):

�̅�𝑟!
(#) =

⎣
⎢
⎢
⎢
⎡𝑥𝑥!
(#)

𝑦𝑦!
(#)

𝑧𝑧!
(#)

1 ⎦
⎥
⎥
⎥
⎤

= 𝑀𝑀#!�̅�𝑟!
(!) (5)

�̅�𝑟!
(#) =

⎣
⎢
⎢
⎢
⎡𝑥𝑥!
(#)

𝑦𝑦!
(#)

𝑧𝑧!
(#)

1 ⎦
⎥
⎥
⎥
⎤

= 𝑀𝑀#!�̅�𝑟!
(!) (6)

This study discusses three types of gear pairs 
with helical teeth, wherein the pinion has a right-
hand and the gear has a left-hand fl ank pitch line:

(a) The involute gear pair

�̅�𝑟!
(!) = $

𝑟𝑟$!(cos(𝜁𝜁! + 𝑡𝑡! − 𝜑𝜑%&'!) + 𝑡𝑡!sin(ζ + 𝑡𝑡! − 𝜑𝜑%&'!))
𝑟𝑟$!(sin(𝜁𝜁! + 𝑡𝑡! − 𝜑𝜑%&'!) − 𝑡𝑡!cos(𝜁𝜁! + 𝑡𝑡! − 𝜑𝜑%&'!))

𝑟𝑟!𝜁𝜁!ctg𝛽𝛽
1

4 (7)

�̅�𝑟!
(!) = $

𝑟𝑟$!(−cos(𝜁𝜁! − 𝑡𝑡! + 𝜑𝜑%&'!) + 𝑡𝑡!sin(ζ − 𝑡𝑡! + 𝜑𝜑%&'!))
𝑟𝑟$!(sin(𝜁𝜁! + 𝑡𝑡! + 𝜑𝜑%&'!) + 𝑡𝑡!cos(ζ − 𝑡𝑡! + 𝜑𝜑%&'!))

𝑟𝑟!𝜁𝜁!ctg𝛽𝛽
1

4 (8)

where: rb1, rb2 are base radii of, respectively, the 
pinion and the gear, 
t1, t2 are gear and pinion tooth profi le pa-
rameters (rolling angles), 
ζ1, ζ2 are the parameters of the helical line 
of the pinion and the gear, 
β is the inclination angle of the fl ank pitch 
line on the pitch cylinder, 
r1 and r2 are the pitch radii of, respective-
ly, the pinion and the gear [23].

(b) The Novikov gear pair

�̅�𝑟!
(!) = $

𝜌𝜌!cos(𝜃𝜃! + 𝜁𝜁!) + 𝑟𝑟!cos𝜁𝜁! − 𝑑𝑑$%!sin(𝛼𝛼& + 𝜁𝜁!)
𝜌𝜌!sin(𝜃𝜃! + 𝜁𝜁!) + 𝑟𝑟!sin𝜁𝜁! + 𝑑𝑑$%!cos(𝛼𝛼& + 𝜁𝜁!)

𝑟𝑟!𝜁𝜁!ctg𝛽𝛽
1

5 (9)

�̅�𝑟!
(!) = $

𝜌𝜌!cos(𝜃𝜃! + 𝜁𝜁!) − 𝑟𝑟!cos𝜁𝜁! − (𝜌𝜌! − 𝜌𝜌$ + 𝑑𝑑%&!)sin(𝛼𝛼' − 𝜁𝜁!)
𝜌𝜌!sin(𝜃𝜃! + 𝜁𝜁!) + 𝑟𝑟!sin𝜁𝜁! + (𝜌𝜌! − 𝜌𝜌$ + 𝑑𝑑%&!)cos(𝛼𝛼' − 𝜁𝜁!)

𝑟𝑟!𝜁𝜁!ctg𝛽𝛽
1

5 (10)

where: θ1, θ2 are profi le parameters, 
ζ1, ζ2 are helix parameters for the pinion 
and the gear, respectively, 
αt is the face pressure angle, 
ρ1 is the convex tooth profi le radius, 
ρ2 is the concave tooth profi le radius, 

 while r1 and r2 are pitch circle radii [7].

(c) The eccentric-cycloidal gear pair

�̅�𝑟!
(!) = $

𝑔𝑔cos(𝜂𝜂! + 𝜁𝜁!) + 𝑒𝑒cos𝜁𝜁!
𝑔𝑔sin(𝜂𝜂! + 𝜁𝜁!) + 𝑒𝑒sin𝜁𝜁!

𝑟𝑟!𝜁𝜁!ctg𝛽𝛽
1

3 (11)

Figure 2. The position and orientation of additional coordinate system h
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�̅�𝑟!
(!) = Rot(𝜋𝜋 − ζ, 𝑍𝑍) · Tr(𝑟𝑟!𝜁𝜁!ctg𝛽𝛽, 𝑍𝑍) ·

·

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑟𝑟$ 1(𝑖𝑖$! + 1)cos𝜂𝜂! − 𝜆𝜆cos((𝑖𝑖$! + 1)𝜂𝜂!) + 𝜈𝜈

cos𝜂𝜂! − 𝜆𝜆cos((𝑖𝑖$! + 1)𝜂𝜂!)
;1 − 2𝜆𝜆cos(𝑖𝑖$!𝜂𝜂!) + 𝜆𝜆!

=

𝑟𝑟$ 1(𝑖𝑖$! + 1)sin𝜂𝜂! − 𝜆𝜆sin((𝑖𝑖$! + 1)𝜂𝜂!) + 𝜈𝜈
sin𝜂𝜂! − 𝜆𝜆sin((𝑖𝑖$! + 1)𝜂𝜂!)
;1 − 2𝜆𝜆cos(𝑖𝑖$!𝜂𝜂!) + 𝜆𝜆!

=

0
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (12)

where: η1 – the profi le parameter, 
ζ1 – the parameter of the pinion fl ank line, 
g=νr1 – the pinion tooth profi le radius, 
ν – the equidistant shift ratio (for an inter-
nal equidistant, ν<0), and 
λ – the tooth height ratio, 
e – the eccentric, 
r1 and r2 – pitch circle radii [22].

TOOTH FLANK SURFACE MODIFICATION

Tooth fl ank surface modifi cation is a proce-
dure wherein the tooth fl ank is deliberately tilted 
away from the nominal surface. Its purpose is 
to compensate for tooth workmanship errors, as 
well as gear position errors in the transmission 
box arising from elastic deformations of shafts, or 
bearing clearances (slackness). Standard [24] dis-
tinguishes between various types of modifi cation, 
the basic of which include: tooth profi le modifi -
cation, tooth fl ank line modifi cation, and topol-
ogy modifi cation. Tooth profi le modifi cation Cα
(Figure 3a)) is generally implemented in order to 

reduce uneven load along the pressure segment. 
Tooth fl ank line modifi cation Cβ (Figure 3b)) can 
compensate for shaft defl ections. The application 
of both modifi cations Cα+Cβ (Figure 3c)) makes 
it possible to avoid edge contact, a phenomenon 
which may lead to stress concentration. In prin-
ciple, any modifi cation may be considered as an 
appropriately defi ned topological modifi cation 
(Figure 3d)). Usually, however, topological modi-
fi cation CΣ is understood as free-form modifi ca-
tion – i.e. freely defi ned on the tooth surface grid.

The modifi cation is conveniently defi ned and 
presented on coordinate grid 𝑧𝑧! = 𝑧𝑧!

(!) ,

𝑟𝑟!" = #(𝑥𝑥"
("))% + (𝑦𝑦"

("))% 

where: index i=1,2 refers to the tooth surface of, 
respectively, the pinion and the gear.

If surface parameters are assigned to the pro-
fi le and the tooth fl ank line, it may also be defi ned 
on their grid θi, ζi. If the modifi cation was not in-
cluded when generating the surface, e.g. by shap-
ing the honing tool or its additional motions, it may 
be implemented with the use of relationship (13)

�̅�𝑟!
∗(!) = �̅�𝑟!

(!) − 𝐶𝐶!𝑛𝑛'!
(!) (13)

where: �̅�𝑟!
∗(!)  – the vector of the modifi ed surface, 
�̅�𝑟!
(!)  – the vector of a non-modifi ed surface, 

Figure 3. Types of tooth fl ank modifi cations: a) profi le modifi cation, b) fl ank line 
modifi cation, c) simultaneous profi le and fl ank line modifi cation, d) topological 

modifi cation, where b is the toothed ring width, and h is the tooth height



123

Advances in Science and Technology Research Journal 2022, 16(4), 119–129

𝑛𝑛"!
(!)  – the versor normal to the non-modi-

fi ed surface, 
Ci – the amount of modifi cation.

In such a situation, instead of the non-mod-
ifi ed surface, the analyses make use of the sur-
face with a modifi cation described by vector (13). 
Note that a positive modifi cation is the modifi -
cation deep into the material (towards the tooth) 
whereas the negative one is a modifi cation to the 
outside of the material (towards the tooth space).

TRANSMISSION ERROR AND EASE-OFF 
TOPOGRAPHY

A method whereby surfaces can be given as 
discrete was used in order to determine transmis-
sion error and Ease-Off  topography. Its concept 
was presented in [25]. The method was designed 
to analyse bevel and hypoid gear pairs, and im-
plemented in KIMoS, a computer-aided bevel and 
hypoid gear pair design system by Klingelnberg. 
This section discusses the authors’ implementa-
tion of the method.

It assumes a perfect mesh between pinion tooth 
Σ1 and gear tooth surface Σ2, i.e. one in which the 
gears are rotated by angles resulting from theoret-
ical gear ratio 𝑖𝑖!" = 𝑧𝑧"/𝑧𝑧! = 𝜑𝜑!/𝜑𝜑" . Surfaces 
in the nth position are shown in Figure 4.

It is assumed that pinion rotation axis 
z1 is aligned with axis zf of fixed coordinate 
system f, and the surfaces in that system are 
given by vectors (3.1) and (3.2). In each posi-
tion n resulting from the discretization of gear 
rotation angles, between the surfaces there is 
a certain distance measured along the arc with 
radius 𝑅𝑅!"#

(%) = #$𝑥𝑥'
(%)&

"
+ $𝑦𝑦'

(%)&
"
  corresponding 

to the length of arc 𝑘𝑘!"# = 𝑀𝑀$𝑀𝑀%$%%& , where M1

is a point on surface Σ1 with coordinates 𝑧𝑧!
(#) , 

and M2 a point on surface Σ2 with coordinates 
𝑧𝑧!
(#) = 𝑧𝑧%&'

(#)  . Angle φkor, by which surface Σ1

would have to be rotated in order for points 
M1 and M2 to overlap, is the central angle cor-
responding to the length of arc 𝑘𝑘!"# = 𝑀𝑀$𝑀𝑀%$%%& 
and can be determined on the basis of coordi-
nates as (14):

𝜑𝜑!"# = 2arcsin

⎝

⎛
,-𝑥𝑥$

(&) − 𝑥𝑥()*
(&) 0

)
+ -𝑦𝑦$

(&) − 𝑦𝑦()*
(&) 0

)

2𝑅𝑅()*
(&)

⎠

⎞ 

𝜑𝜑!"# = 2arcsin

⎝

⎛
,-𝑥𝑥$

(&) − 𝑥𝑥()*
(&) 0

)
+ -𝑦𝑦$

(&) − 𝑦𝑦()*
(&) 0

)

2𝑅𝑅()*
(&)

⎠

⎞ 

(14)

The distance between fl ank surfaces is ex-
pressed as (15)

Figure 4. Tooth fl anks in the nth position
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𝑘𝑘!"# = 𝑅𝑅$%&
(() 𝜑𝜑!"# (15)

In each nth position there is a certain minimum 
distance 𝑘𝑘!"#$%&  with its corresponding angle 𝜑𝜑!"#$%& . 
The relationship between minimum angle 𝜑𝜑!"#$%&  
and gear rotation angle φ2 determined discretely 
for all n positions constitutes the transmission er-
ror. In addition, in a specific nth position the dis-
tribution of distances kkor on surface Σ1 is referred 
to as an instantaneous Ease-Off. The Ease-Off is 
generated in the form of the lowest-lying enve-
lope of instantaneous Ease-Offs for all n posi-
tions. The greatest challenge posed by the method 
is to specify the location of point M2 on surface 
Σ2 which corresponds to coordinate 𝑧𝑧!

(#) = 𝑧𝑧%&'
(#)   

and radius 𝑅𝑅!"#
(%)  . The issue may be easily solved 

by interpolation in cylindrical coordinate system 
𝜃𝜃!"
($), 𝑅𝑅!"

($), 𝑧𝑧!
($) .

GEOMETRIC CONTACT PATTERN

In a gear pair, the contact pattern is the area 
where contact takes place between mating tooth 
surfaces. It is created by the elastic deformation 
of teeth due to forces exerted in the meshing. 
A geometric contact pattern is defined as an ap-
proximation of the actual contact area based ex-
clusively on the geometric properties of surfaces 
in contact. In other words, it is determined with-
out taking into account the relationship between 
the deformation and forces applied or the type of 
material used.

There are many methods of determining the 
geometric contact pattern. They include, among 
others, methods based on mathematical models 
[26–28] and methods employing CAD systems 
[29,30]. The use of CAD systems involves the mu-
tual penetration of three-dimensional tooth mod-
els to the depth corresponding to the thickness of 
the gear marking compound applied in gear pair 
tests, or the expected deformations. The contact 
pattern has the form of a flaky construct gener-
ated through the logical multiplication of thus po-
sitioned solid shapes. To visualise the movement 
of the contact pattern, the above operation must 
be performed for consecutive discrete positions 
arising from the rotation angles of gear solids. 
This approach was detailed in [31]. Its equivalent 
is the method which involves finding the curve 
of the intersection of tooth surfaces supplied in 

an analytical way [27]. Another method is the 
one proposed in [26]. The contact pattern is de-
fined as the area for which the distance between 
the points on the surfaces in contact, measured 
along the common normal, is lower than the set 
amount. In order to determine the contact pattern, 
the method uses an approach similar to determin-
ing Hertz contact stress for point contact [32,33]. 
It is based only on the main curvatures of the sur-
faces, and the contact pattern resulting from the 
local approximation of surfaces is always ellipti-
cal [34]. The main drawback of this approach is 
that it is constrained to only local analysis, with-
out taking into account e.g. edge contact. More-
over, it is of limited use for non-elliptical contact 
patterns which occur e.g. in gears with an eccen-
tric-cycloidal profile [22] or Novikov gears with 
a concavo-convex profile [35]. The last method, 
described in more detail in this paper, is one in 
which contact pattern is determined as a set of 
points for which the distance between tooth flank 
surfaces, measured along unit normal to the pin-
ion tooth flank, is lower than the set value [28]. 
The method makes it possible to determine edge 
and non-elliptical patterns, as verified experimen-
tally for cylindrical Novikov gears [7] and eccen-
tric-cycloidal meshing [22].

Let us consider a gear for which mating tooth 
surfaces Σ1 and Σ2 are given in a fixed coordinate 
system f by vectors (5) and (6). The contact pat-
tern is determined on the basis of vector equation 
(16) resulting directly from Figure 5.

�̅�𝑟!
(#)(𝜃𝜃!, 𝜁𝜁!) + 𝑘𝑘𝑛𝑛+!

(#)(𝜃𝜃!, 𝜁𝜁!) = �̅�𝑟%
(#)(𝜃𝜃%, 𝜁𝜁%), (16)

where: k – the distance between tooth flanks 
measured along unit normal to the pinion tooth 
surface. The above equation can be solved on 
the basis of distance k and gear tooth surface pa-
rameters θ2, ζ2 for all discrete pinion tooth sur-
face parameters θ1, ζ1. The points for which dis-
tance k is smaller than the assumed value form 
the contact pattern. Assuming that gears revolve 
around axis z, the contact pattern is conveniently 
presented as a projection on plane ry1, zf, where 

𝑟𝑟!" = #(𝑥𝑥"
($))& + (𝑦𝑦"

($))&  is an arbitrary radius 
of the pinion.

Solving vector equation (16) representing 
a system of three algebraic, usually non-linear 
equations, is problematic and time-consum-
ing even if numerical methods are employed 
[36,37]. For this reason, it is recommended that 
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the solution should be approximated by means of 
a geometric method. The author proposes a meth-
od (Figure 6) wherein the gear tooth surface is 
presented as a grid of triangles, which can be ac-
complished by Delaunay triangulation [38].

Next, for each point on pinion tooth surface 
M1, we shall determine point M2, where the gear 
tooth surface triangle intersects with a straight 
line normal to the pinion tooth surface, which can 
be accomplished by the algorithm described in 
[39]. The points for which distance |M1M2| is low-
er than the set distance are plotted on the chart, 
forming the gear pair’s contact pattern.

RESULTS AND DISCUSSION

The proposed computation methods were vi-
sualised based on cylindrical gear pairs with data 
listed in Table 1.

Parameters of individual profi les together with 
their transverse sections were shown in Table 2.

The simulations enabled us to obtain Ease-Off 
charts, transmission charts, and contact patters for 

the involute gear pair (Figure 7), Novikov gear 
pair (Figure 8), as well as eccentric-cycloidal 
(Figure 9) gear pair. In all cases, the modifi cation 
which involves tooth fl ank line and profi le crown-
ing allowed us to avoid interference, as displayed 
by the consistent distribution of Ease-Off  topogra-
phy with minimum values present in the expected 
tooth contact areas. Moreover, transmission error 
did not occur, and the shape of the transmission 
curve was parabolic. In all cases, contact patters 
were determined for gear marking compound 
thickness k=5μm. Their areas as a function of pin-
ion rotation angle were juxtaposed in Figure 10.

Used modifi cation for involute gears re-
sults in a parabolic-like transmission chart (Fig-
ure 7b)), which is desirable and consistent with 
results obtained by other researchers [40,41]. 
Contact patterns are elliptical (Figure 7 c)) and 
also correspond to localized bearing contact for 
involute helical gearing [42]. In the case of the 
Novikov type of gearing, the transmission chart 
is fl attened (Figure 8b)) with parabolic segments 
at the beginning and at the end of meshing. This 
shape of the transmission chart results from ap-
plied lead modifi cation, which must be chosen 
not to reduce the overlap ratio (maintaining the 
constant transmission). Due to conformal contact 
Ease-Off  plot (Figure 8a)) takes lower values than 
in the case of involute gearing (Figure 7a)). Con-
tact patterns in Novikov gear are not elliptical and 
take the shape which is typical for high conformal 
gear pairs as reported in [20]. The transmission 
chart obtained for eccentric cycloidal gear mesh 
(Figure 9b)) is similar to that obtained for invo-
lute gearing (Figure 7b)). This similarity results 
from the fact that both of these gears are charac-
terized by transverse and overlap ratios. Contact 
patterns are not elliptical (Figure 9c)). Its shape 
and location correspond to contact lines for this 
kind of gear mesh [21].

The largest contact area was found for the 
Novikov gear pair (A=8.5 mm2), due to the con-
vexo-concave tooth contact. In other gear pairs, 
maximum areas of contact were A=6.57 mm2 for 

Table 1. Basic gear mesh data

Parameter Pinion Gear
Number of teeth z 17 35
Toothed ring width b, mm 30
Normal module mn, mm 3
Tooth helix line direction Right Left
Centre distance ar, mm 84

Figure 6. The proposed method for determining 
distances between mating tooth surfaces

Figure 5. Determining distances 
between mating tooth surfaces
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Figure 8. Results of tooth contact analysis for 
the Novikov gear pair: a) Ease-Off  topography, 

b) transmission chart, c) contact patterns 

Figure 7. Results of tooth contact analysis for 
the involute gear pair: a) Ease-Off  topography, 

b) transmission chart, c) contact patterns.

Table 2. Gear mesh parameters

Mesh Parameters Tooth profi le (trasnverse section)

Involute mesh

αn=20º
β =20º

rb1=25.3047 mm rb2=52.0979 mm
r1=27.1365 mm r2=55.8693 mm

xt1=xt2=0.1617

Novikov mesh

αt=21.4036º
β =21.7868º

r1=27.4615 mm r2=56.5385 mm
ρ1=4.9431 mm
ρ2=4.9678 mm

Eccentric-cycloidal mesh

β=21.7868º
g=3.0208 mm

v=-0.11
e=26.0885 mm

r1=27.4615 mm r2=56.5385 mm
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involute and A=5.32 mm2 for eccentric-cycloidal 
gear. In addition, a reduced contact ratio in the 
Novikov gear relative to the other two gear pairs 
can be observed, caused by the character of tooth 
contact in the pair. Linear contact in the involute 
gear and the eccentric-cycloidal gear pair implies 
the presence of both face and overlap contact ra-
tio, while in the Novikov type (with point contact), 
meshing takes place only as a result of the overlap.

CONCLUSIONS

The simulations allowed us to draw the 
following conclusions. Tooth modification in-
volving crowning the addendum and the flank 
line enables avoiding edge contact. A suitably 
chosen modification ensures consistent trans-
mission (no transmission error). The Novikov 
gear pair was characterised by the largest con-
tact area (approx. 30% greater than for the in-
volute gear pair, and 60% greater than for the 
eccentric-cycloidal gear pair).

Furthermore, assuming that the pinion’s ro-
tation speed is n1=100 rpm, the maximum slid-
ing velocities are as follows: 102 mm/s for the 
involute gear pair, 77 mm/s for the Novikov 
gear pair and 99 mm/s for the eccentric-cy-
cloidal gear pair. The sliding velocity is lower 
nearly about 30% for Novikov gears. As it is 
known sliding velocity has a direct impact on 
the contact temperature which in turn is related 
to the wear of teeth.

Taking the above into account and assum-
ing, for the sake of simplicity, that maximum 
contact stress is inversely proportional to the 
area of the contact ellipsis, the Novikov gear 
enables us to obtain a nearly 1.30-fold stress 
reduction. Therefore, we may posit a thesis 
that the Novikov gear pair will offer a greater 
surface load-carrying capacity (or durability 
arising from this capacity) than other types of 
meshing analysed in this paper, which may be 
tested in further research, both in the FEA en-
vironment and on test benches.

Figure 10. Contact areas as a function of pinion rotation angle.

Figure 9. Results of tooth contact analysis for 
the eccentric-cycloidal gear pair: a) Ease-Off 

topography, b) transmission chart, c) contact patterns
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